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Disease progression models are used to 
personalize care, detect diseases at earlier 
stages, and study interventions[1, 2]

But these models historically fail to account 
for disparities that bias the data they are 
trained on[3, 4, 5]

1. Develop an interpretable, identifiable 
disease progression model that accounts 
for 3 key disparities

2. Prove that failing to account for disparities 
leads to biased estimates of severity

3. Characterize fine-grained disparities in a 
real-world heart failure dataset

Disparities in heart 
failure progression
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Background

More accurate severity estimates

We model dependence on a demographic vector 𝐴 to capture disparities along our axes:

Quantify existence 
of disparities
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Theorems 3-5 (informal). In the presence of health disparities, a model that fails to account for any of the 
three disparities will produce biased estimates of severity.
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Model that fails to account for disparities in...

Full model Initial severity Progression rate Visit frequency

Underserved group bias -0.02 -0.89 -0.04 -0.37
Non-underserved group bias 0.01 +1.02 +0.20 +0.33

Table 2: Failing to account for disparities produces biased estimates of severity Zt. We compare
severity estimates from our full model to three ablated models that each fail to account for one of the
disparities. While our full model produces accurate, well-calibrated severity estimates, each ablated
model underestimates severity for the underserved group and overestimates it for the other group.

In §6.4 we present our main results: we interpret our model’s learned parameters to provide precise
descriptions of health disparities in our setting, and we show that (as our theory predicts) failing to
account for these disparities meaningfully shifts severity estimates.

6.1 DATA

Our data comes from the New York-Presbyterian (NYP)/Weill Cornell Medical Center’s electronic
health record (EHR) system from 2012 - 2020. We analyze a cohort of N = 2, 942 patients who (1)
have a specific subtype of heart failure (heart failure with reduced ejection fraction), to ensure our
cohort can be described by a single progression model, and (2) are likely to receive most of their
cardiology care in the NYP system, to ensure we can reasonably estimate when they receive care.

Observed feature data Xt for each patient includes four types of measurements: left ventricle ejec-
tion fraction (LVEF), brain natriuretic peptide (BNP), systolic blood pressure (SBP), and heart rate
(HR). LVEF and BNP have strong clinical associations with heart failure severity (in terms of both
underlying physiological health and observed symptoms) (Murphy et al., 2020). SBP and HR are
less informative (more prone to fluctuation and changes not related to heart failure), but they are still
expected to show general trends over time as a patient’s heart failure progresses. Since we must pin
the sign of at least one scaling factor F for identifiability, and decreasing LVEF is strongly asso-
ciated with increasing severity in the heart failure subtype we study, we pin the sign of the scaling
factor between severity and LVEF values (FLVEF < 0).

We discretize time into 1-week bins and observe timesteps when patients receive care. We then
analyze disparities across four self-reported race/ethnicity groups: White non-Hispanic patients,
Black non-Hispanic patients, Hispanic patients, and Asian non-Hispanic patients (which we will
hereby describe as White, Black, Hispanic, and Asian subgroups). A full description of our data
processing can be found in Appendix D.

6.2 MODEL VALIDATION

We first confirm that our model accurately fits the data: we verify that the model’s inferred param-
eters are consistent with medical knowledge (§6.2.1) and compare the model’s reconstruction and
predictive performance to standard baselines (§6.2.2). Having confirmed this, we then show in §6.4,
as our primary result, that our model provides insight into disparities in disease progression.

6.2.1 CONSISTENCY WITH MEDICAL KNOWLEDGE

Figure 3 plots our model’s inferred parameters, all of which are consistent with existing medical
knowledge.1 Specifically, (1) the model correctly learns that BNP and HR tend to increase with heart
failure severity (FBNP, FHR > 0), while SBP tends to decrease (FSBP < 0) (Murphy et al., 2020);
(2) the model learns larger variance parameters for SBP and HR values ( ), correctly inferring that
these features are less informative about heart failure progression than are BNP and LVEF (Murphy
et al., 2020); and (3) the model estimates that �Z is positive, meaning it learns that patients with
higher disease severity tend to see healthcare providers more frequently, as expected.

1For succinctness, Figure 3 plots only the model parameters of primary interest for interpreting our model
(omitting, for example, estimated intercepts for each feature); a similar coefficient plot with all learned param-
eters is shown in Figure S4.
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Failing to account for disparities produces biased severity estimates; our model addresses this
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Axes of Disparities
We define three axes along which we 
observe and analyze disparities:

Can we extend a standard disease 
progression modeling approach to 
capture health disparities?

Fine-grained descriptions of disparities

A model that captures three key disparities

Our model accounts for all three disparities, leading to less biased severity estimates:
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Figure 3: Inferred model parameters with 95% confidence intervals. Shared parameters (left)
are consistent with medical knowledge of heart failure progression. Group-specific parameters
(right) are plotted as differences compared to White patients, so confidence intervals that are non-
overlapping with 0 (colored in purple) indicate significant racial/ethnic differences in parameters.

6.2.2 RECONSTRUCTION AND PREDICTIVE PERFORMANCE

We next evaluate the model’s ability to reconstruct and predict patient features Xt. Because the
model represents each patient visit in terms of a scalar severity Zt, we do not expect the model
to perfectly reconstruct the multi-dimensional Xt; rather, we hope for predictions that correlate
significantly with Xt. Consistent with this, when fit on 3 years of data per patient, our model’s
predicted feature values correlate with true values both in- and out-of-sample. As we would hope,
the model best represents the features that are most informative for heart failure progression—LVEF
(r = 0.81 in-sample, r = 0.51 out-of-sample) and BNP (r = 0.62 in-sample, r = 0.31 out-of-
sample)—as opposed to the less-informative features SBP (r = 0.42 in-sample, r = 0.24 out-of-
sample) and HR (r = 0.17 in-sample, r = 0.03 out-of-sample; all p-values besides HR out-of-
sample < 0.001).

To provide a more detailed assessment of performance, we evaluate our model’s ability to recon-
struct features Xt in-sample and predict Xt out-of-sample, in comparison to seven standard base-
lines. All of the baselines are designed to reconstruct or predict observed feature values (Xt), as
opposed to additionally predicting whether patient visits will occur (Dt). Our model can predict the
latter as well, but in order to provide a direct comparison of reconstruction and predictive perfor-
mance, we compare only the feature prediction aspect of our model (so we do not fit any models
using Dt data) in this subsection. In the main text we report mean absolute percentage error (MAPE)
of estimated feature values because it allows us to report a normalized measure of error across mul-
tiple feature values; in Appendix E we additionally report RMSE.

Reconstruction performance. We compare our model’s reconstruction performance to that of
two standard dimensionality reduction baselines: principal component analysis (PCA) and factor
analysis (FA). We compare our model to two variants of each. First, we compare our model to PCA
and FA fit at the visit level: one component per patient visit, analogous to our model’s Zt. Second,
we compare our model to PCA and FA fit at the patient level: two components for each patient, to
capture the trajectory of feature values as we do with Z0 and R. We describe the implementation of
these baselines with more detail in Appendix E.

Because both PCA and FA require input vectors of consistent size, all models are fit on feature values
from the first three visits per patient. In Table 3, we report MAPE values averaged across all features
as well as across just the more informative features for heart failure severity: LVEF and BNP. We
achieve equivalent or better reconstruction performance across all features, and we reconstruct the
more informative features more accurately than any of the baselines.

Predictive Performance. We also compare our model’s predictive performance to that of three
standard timeseries forecasting baselines: (1) a linear regression for each patient and feature; (2) a
quadratic regression for each patient and feature; and (3) predicting values equal to those at the last
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Inferred model parameters with 95% confidence intervals
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Figure 4: Accounting for disparities leads to less biased severity estimates. We compare the
improvement of our full model (blue) over one that does not account for disparities but is otherwise
the same (yellow) in two ways. On the left, we show each group’s average difference from the
overall mean severity, normalized by the overall standard deviation of severity. On the right, we
capture the portion of each group that is identified as “high-risk” (top quartile of disease severity).

Accounting for disparities increases estimated severity for non-white patient groups. To as-
sess whether accounting for disparities meaningfully shifts severity estimates, we compare severity
estimates from our model to those of an ablated version of our model that does not account for dis-
parities (but is otherwise identical). This meaningfully shifts severity estimates (Figure 4 left): while
both models learn that non-white patients tend to have higher severity values, the ablated model pro-
duces higher severity estimates for White patients and lower severity estimates for all other groups
(p < 0.001 for all groups, computed by cluster bootstrapping at the patient-level). This is consistent
with our theoretical results.

To highlight some implications of these shifted severity estimates, we look at each model’s ranking
of patient severity levels and profile of “high-risk” patient visits: visits where inferred severity lies
in the top quartile (25%) of all visits. The ablated model is significantly less likely to rank Black
patient visits as high risk (Figure 4 right; p < 0.001, computed by cluster bootstrapping at the
patient-level), skewing the demographics of the high-risk patient cohort away from groups that we
know to have higher disease severity.

7 DISCUSSION

In this paper, we formalize three specific axes along which healthcare disparities emerge as biases
in observed health data: underserved patients may (1) first receive care only when their disease is
more severe, (2) progress faster even while receiving care, or (3) receive care less frequently even
at the same disease severity. We develop a disease progression modeling approach to interpretably
capture all three types of disparities while provably retaining identifiability. We prove that failing
to account for any of these disparities leads to biased estimates of severity and show in a real-world
heart failure dataset that accounting for health disparities does indeed meaningfully shift severity
estimates by increasing the proportion of non-white patients identified as high-risk. By evaluating
our model in a real healthcare setting, we validate its ability to learn fine-grained descriptions of
health disparities and to make disease severity estimates that are accurate across diverse populations
of patients. We thus urge future work in disease progression modeling to account for disparities in
healthcare, and we lay a foundation for doing so.

There are several natural directions for future work. First, beyond heart failure, our approach could
be applied to the many other progressive diseases, including Parkinson’s disease (Post et al., 2005),
Alzheimer’s disease (Holford & Peace, 1992), diabetes (Perveen et al., 2020), and cancer (Gupta &
Bar-Joseph, 2008). Second, an interesting technical direction is to extend our model to capture ad-
ditional data modalities (e.g., medical images) or more flexible progression models (e.g., non-linear
trajectories) while retaining its provable identifiability. Finally, our approach generalizes naturally
to progression model settings beyond healthcare where disparities are of interest, including infras-
tructure deterioration (Madanat et al., 1995) and human aging (Pierson et al., 2019); these would be
interesting domains for future work.
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Accounting for disparities meaningfully shifts 
severity estimates for all racial/ethnic groups
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Figure 4: Accounting for disparities leads to less biased severity estimates. We compare the
improvement of our full model (blue) over one that does not account for disparities but is otherwise
the same (yellow) in two ways. On the left, we show each group’s average difference from the
overall mean severity, normalized by the overall standard deviation of severity. On the right, we
capture the portion of each group that is identified as “high-risk” (top quartile of disease severity).
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parities (but is otherwise identical). This meaningfully shifts severity estimates (Figure 4 left): while
both models learn that non-white patients tend to have higher severity values, the ablated model pro-
duces higher severity estimates for White patients and lower severity estimates for all other groups
(p < 0.001 for all groups, computed by cluster bootstrapping at the patient-level). This is consistent
with our theoretical results.

To highlight some implications of these shifted severity estimates, we look at each model’s ranking
of patient severity levels and profile of “high-risk” patient visits: visits where inferred severity lies
in the top quartile (25%) of all visits. The ablated model is significantly less likely to rank Black
patient visits as high risk (Figure 4 right; p < 0.001, computed by cluster bootstrapping at the
patient-level), skewing the demographics of the high-risk patient cohort away from groups that we
know to have higher disease severity.
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in observed health data: underserved patients may (1) first receive care only when their disease is
more severe, (2) progress faster even while receiving care, or (3) receive care less frequently even
at the same disease severity. We develop a disease progression modeling approach to interpretably
capture all three types of disparities while provably retaining identifiability. We prove that failing
to account for any of these disparities leads to biased estimates of severity and show in a real-world
heart failure dataset that accounting for health disparities does indeed meaningfully shift severity
estimates by increasing the proportion of non-white patients identified as high-risk. By evaluating
our model in a real healthcare setting, we validate its ability to learn fine-grained descriptions of
health disparities and to make disease severity estimates that are accurate across diverse populations
of patients. We thus urge future work in disease progression modeling to account for disparities in
healthcare, and we lay a foundation for doing so.

There are several natural directions for future work. First, beyond heart failure, our approach could
be applied to the many other progressive diseases, including Parkinson’s disease (Post et al., 2005),
Alzheimer’s disease (Holford & Peace, 1992), diabetes (Perveen et al., 2020), and cancer (Gupta &
Bar-Joseph, 2008). Second, an interesting technical direction is to extend our model to capture ad-
ditional data modalities (e.g., medical images) or more flexible progression models (e.g., non-linear
trajectories) while retaining its provable identifiability. Finally, our approach generalizes naturally
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Failing to account for disparities biases classification of 
“high-risk patients” away from groups with higher severity

Full paper

We fit our model on NYP heart failure data of 
2942 patients and interpret model 
parameters. We find racial disparities in 
initial severity and visit frequency:

Our model remains provably 
and empirically identifiable 

while accounting for multiple 
types of disparities

Interpretable 
parameters →+
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