
Robust Heuristics: Packet job size estimation 
with provable guarantees against DoS attacks

Background

Methods

Next Steps

Erica Chiang (eschiang@andrew.cmu.edu), Nirav Atre, Hugo Sadok, Weina Wang, Justine Sherry

Packet scheduling policies affect which 
packets are dropped in overload 

(implications for network performance, 

security, robustness to attacks)

Weighted Shortest Job First (WSJF) 

• Serves packets in increasing job size         to 

packet size         ratio

• Leads to powerful bounds on displaced 
traffic relative to resource investment 

[1]

• Relies on job size heuristics – often not 

perfect in practice

Can we maintain theoretical guarantees in 

the presence of imperfect heuristics? 

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Results

v

v

It is possible to maintain protection 
guarantees with heuristics that 
estimate ratios monotonically 
increasing with true ratios

Perfect scheduling ⟹ DF ≤ 1

We can preserve weaker guarantees
with heuristics that classify packets into 
job size categories 

Adversarial packet cannot displace innocent 

packets with ratio more than a factor of k
smaller ⟹ DF ≤ k

• Design data structures and corresponding 

heuristics that possess these properties, 

examine performance in practice

• Examine preemption performance when 

paired with stronger heuristics

Discussion

• Certain heuristic properties provably 

maintain generalizable robustness against 

DoS attacks in WSJF systems

• Other methods of protection (i.e.

preemption) can introduce new system 

weaknesses

Scan for abstract and proofs

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

True job size,

Estimated job 
size,      .

Step Function Heuristic

SIGCOMM Poster

Strictly Increasing Ratio Estimates

Estimated 
z-ratio,     .

Heuristic 
service order

True z-ratio,
Expected service order

Categorized Job Size Estimates

True job size,

Estimated
 job size,      .

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

True job size,

Estimated job 
size,      .

Step Function Heuristic

SIGCOMM Poster

Strictly Increasing Ratio Estimates

Estimated 
z-ratio,     .

Heuristic 
service order

True z-ratio,
Expected service order

Categorized Job Size Estimates

True job size,

Estimated
 job size,      .

1. Strictly Increasing Heuristics Maintain Perfect Scheduling

2. Step Functions Preserve a Constant Bound

3. Preemption Cannot Maintain Bounds (Negative Result) 

v

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Preempting incorrectly estimated jobs 
introduces new vulnerabilities

Weaponize innocent traffic ⟹ unbounded DF

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Erica Chiang, Nirav Atre, Hugo Sadok

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 1: WSJF should de-prioritize the attack packet, but with in-
correct estimates, innocent packets are displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical �ndings regard-

ing protection against ACAs when job sizes are unknown. Proofs
for all theorems can be found in [2].

3.1 Strictly Monotonically Increasing Heuristics
Maintain Perfect Scheduling

We �rst develop the concept of a ‘perfect’ heuristic, meaning that
all packets are scheduled correctly when using estimated job sizes.
Since correctly ordering all packets is equivalent to preserving the
relative ordering between any pair of packets, a perfect heuristic
must estimate job sizes such that between any two packets, the
packet with smaller I-ratio will have a smaller estimated I-ratio. We
can visualize this as any function mapping true ratios to estimated
ratios that is strictly monotonically increasing, as seen in Figure 2.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 2: Strictly monotonically increasing ratios lead to perfect
scheduling.

Any such heuristic preserves the relative ordering of packets as
they are scheduled according to WSJF, which in turn maintains all
guarantees from [1] and yields an upper-bound of 1 on the DF. In
§A.1, we prove the following:

T������ 1 (DF �� M�������� H��������). Under WSJF,
a heuristic 2̃ is perfect if and only if 2̃ (?)

B (?) is strictly monotonically

increasing relative to 2 (?)
B (?) ; such heuristics result in the DF being

upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which

packets are correctly classi�ed into job size categories, but packets
within each category (‘step’) are indistinguishable. In particular, we
consider heuristics where the range of actual job sizes that each
step covers has an upper bound that is a constant multiplicative
factor, : , times the lower bound, and estimates of each step increase
by the same factor : , as depicted in Figure 3.

Despite categorizing job sizes on a coarse level, the discrete steps
still enforce a lower bound on how small each packet’s job size
estimate can be, protecting all jobs below a certain threshold. As
we show in §A.2, this yields an upper-bound of : on the DF.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 3: Step function heuristic.

T������ 2 (DF �� S��� F������� H��������). A heuristic
of the form 2̃ (?) = 0 ·: blog: 2 (?) c , where 0 is some arbitrary constant,
results in the DF being upper-bounded by : .

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting

systems against ACAs. The setup is as follows: each incoming job
is assigned an estimated job size of �? ; if the job has not �nished
running within the allocated �? time, the system preempts it and
reinserts the job (with saved state) back into the scheduling queue,
with an increased estimated job size of 2�? . The preemption model
is depicted in Figure 4.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 4: Preeemption system model.

This allows us to systematically allocate resources to each packet
and ensures that packets �nish according to job size order, even
when job sizes are unknown. However, even if there is no preemp-
tion cost – an overly optimistic assumption – this setup can result
in an unbounded DF. As we show in §A.3, preemption alone cannot
guarantee any bound on the DF:

T������ 3 (DF �� P���������M����). Under WSJF with
preemption but without heuristics, there exist regimes of system pa-
rameters for which the DF is lower bounded by d

1�d , where d  1 is
the load on the system due to innocent tra�c.

4 Next Steps
Having identi�ed desirable properties for heuristics and a frame-

work for reasoning about their vulnerability, the main unanswered
question is: how do we design data structures and corresponding
heuristics such that we see these properties in practice? In addition,
while we do not see theoretical bounds on the DF as a result of
preemption alone, is it possible that some level of preemption could
still be bene�cial in practice?

Acknowledgments
We thank the anonymous reviewers for their insightful com-

ments. This work was funded by Intel and VMware through the
Intel/VMware Crossroads 3D-FPGA Academic Research Center, a
VMWare Systems Research Award, and a Google Research Gift.

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Erica Chiang, Nirav Atre, Hugo Sadok

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 1: WSJF should de-prioritize the attack packet, but with in-
correct estimates, innocent packets are displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical �ndings regard-

ing protection against ACAs when job sizes are unknown. Proofs
for all theorems can be found in [2].

3.1 Strictly Monotonically Increasing Heuristics
Maintain Perfect Scheduling

We �rst develop the concept of a ‘perfect’ heuristic, meaning that
all packets are scheduled correctly when using estimated job sizes.
Since correctly ordering all packets is equivalent to preserving the
relative ordering between any pair of packets, a perfect heuristic
must estimate job sizes such that between any two packets, the
packet with smaller I-ratio will have a smaller estimated I-ratio. We
can visualize this as any function mapping true ratios to estimated
ratios that is strictly monotonically increasing, as seen in Figure 2.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 2: Strictly monotonically increasing ratios lead to perfect
scheduling.

Any such heuristic preserves the relative ordering of packets as
they are scheduled according to WSJF, which in turn maintains all
guarantees from [1] and yields an upper-bound of 1 on the DF. In
§A.1, we prove the following:

T������ 1 (DF �� M�������� H��������). Under WSJF,
a heuristic 2̃ is perfect if and only if 2̃ (?)

B (?) is strictly monotonically

increasing relative to 2 (?)
B (?) ; such heuristics result in the DF being

upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which

packets are correctly classi�ed into job size categories, but packets
within each category (‘step’) are indistinguishable. In particular, we
consider heuristics where the range of actual job sizes that each
step covers has an upper bound that is a constant multiplicative
factor, : , times the lower bound, and estimates of each step increase
by the same factor : , as depicted in Figure 3.

Despite categorizing job sizes on a coarse level, the discrete steps
still enforce a lower bound on how small each packet’s job size
estimate can be, protecting all jobs below a certain threshold. As
we show in §A.2, this yields an upper-bound of : on the DF.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 3: Step function heuristic.

T������ 2 (DF �� S��� F������� H��������). A heuristic
of the form 2̃ (?) = 0 ·: blog: 2 (?) c , where 0 is some arbitrary constant,
results in the DF being upper-bounded by : .

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting

systems against ACAs. The setup is as follows: each incoming job
is assigned an estimated job size of �? ; if the job has not �nished
running within the allocated �? time, the system preempts it and
reinserts the job (with saved state) back into the scheduling queue,
with an increased estimated job size of 2�? . The preemption model
is depicted in Figure 4.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 4: Preeemption system model.

This allows us to systematically allocate resources to each packet
and ensures that packets �nish according to job size order, even
when job sizes are unknown. However, even if there is no preemp-
tion cost – an overly optimistic assumption – this setup can result
in an unbounded DF. As we show in §A.3, preemption alone cannot
guarantee any bound on the DF:

T������ 3 (DF �� P���������M����). Under WSJF with
preemption but without heuristics, there exist regimes of system pa-
rameters for which the DF is lower bounded by d

1�d , where d  1 is
the load on the system due to innocent tra�c.

4 Next Steps
Having identi�ed desirable properties for heuristics and a frame-

work for reasoning about their vulnerability, the main unanswered
question is: how do we design data structures and corresponding
heuristics such that we see these properties in practice? In addition,
while we do not see theoretical bounds on the DF as a result of
preemption alone, is it possible that some level of preemption could
still be bene�cial in practice?

Acknowledgments
We thank the anonymous reviewers for their insightful com-

ments. This work was funded by Intel and VMware through the
Intel/VMware Crossroads 3D-FPGA Academic Research Center, a
VMWare Systems Research Award, and a Google Research Gift.

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Erica Chiang, Nirav Atre, Hugo Sadok

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 1: WSJF should de-prioritize the attack packet, but with in-
correct estimates, innocent packets are displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical �ndings regard-

ing protection against ACAs when job sizes are unknown. Proofs
for all theorems can be found in [2].

3.1 Strictly Monotonically Increasing Heuristics
Maintain Perfect Scheduling

We �rst develop the concept of a ‘perfect’ heuristic, meaning that
all packets are scheduled correctly when using estimated job sizes.
Since correctly ordering all packets is equivalent to preserving the
relative ordering between any pair of packets, a perfect heuristic
must estimate job sizes such that between any two packets, the
packet with smaller I-ratio will have a smaller estimated I-ratio. We
can visualize this as any function mapping true ratios to estimated
ratios that is strictly monotonically increasing, as seen in Figure 2.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 2: Strictly monotonically increasing ratios lead to perfect
scheduling.

Any such heuristic preserves the relative ordering of packets as
they are scheduled according to WSJF, which in turn maintains all
guarantees from [1] and yields an upper-bound of 1 on the DF. In
§A.1, we prove the following:

T������ 1 (DF �� M�������� H��������). Under WSJF,
a heuristic 2̃ is perfect if and only if 2̃ (?)

B (?) is strictly monotonically

increasing relative to 2 (?)
B (?) ; such heuristics result in the DF being

upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which

packets are correctly classi�ed into job size categories, but packets
within each category (‘step’) are indistinguishable. In particular, we
consider heuristics where the range of actual job sizes that each
step covers has an upper bound that is a constant multiplicative
factor, : , times the lower bound, and estimates of each step increase
by the same factor : , as depicted in Figure 3.

Despite categorizing job sizes on a coarse level, the discrete steps
still enforce a lower bound on how small each packet’s job size
estimate can be, protecting all jobs below a certain threshold. As
we show in §A.2, this yields an upper-bound of : on the DF.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 3: Step function heuristic.

T������ 2 (DF �� S��� F������� H��������). A heuristic
of the form 2̃ (?) = 0 ·: blog: 2 (?) c , where 0 is some arbitrary constant,
results in the DF being upper-bounded by : .

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting

systems against ACAs. The setup is as follows: each incoming job
is assigned an estimated job size of �? ; if the job has not �nished
running within the allocated �? time, the system preempts it and
reinserts the job (with saved state) back into the scheduling queue,
with an increased estimated job size of 2�? . The preemption model
is depicted in Figure 4.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 4: Preeemption system model.

This allows us to systematically allocate resources to each packet
and ensures that packets �nish according to job size order, even
when job sizes are unknown. However, even if there is no preemp-
tion cost – an overly optimistic assumption – this setup can result
in an unbounded DF. As we show in §A.3, preemption alone cannot
guarantee any bound on the DF:

T������ 3 (DF �� P���������M����). Under WSJF with
preemption but without heuristics, there exist regimes of system pa-
rameters for which the DF is lower bounded by d

1�d , where d  1 is
the load on the system due to innocent tra�c.

4 Next Steps
Having identi�ed desirable properties for heuristics and a frame-

work for reasoning about their vulnerability, the main unanswered
question is: how do we design data structures and corresponding
heuristics such that we see these properties in practice? In addition,
while we do not see theoretical bounds on the DF as a result of
preemption alone, is it possible that some level of preemption could
still be bene�cial in practice?

Acknowledgments
We thank the anonymous reviewers for their insightful com-

ments. This work was funded by Intel and VMware through the
Intel/VMware Crossroads 3D-FPGA Academic Research Center, a
VMWare Systems Research Award, and a Google Research Gift.

Novel theoretical findings on provable 

protection against DoS attacks:

Conclusion

• Design heuristics          that map packets of 

certain job size to same estimate

• Assumptions: static time, adversary 

knows innocent packet distribution

• Analysis: consider optimal adversarial 

attack, analyze heuristic for DF bounds, 

generalize to robust heuristic properties
• Analyze DF bounds in system preempts 

jobs when they exceed estimated runtime

Robust Heuristics: A�acks and Defenses
for Job Size Estimation in WSJF Systems

Erica Chiang, Nirav Atre, Hugo Sadok
Carnegie Mellon University

ACM Reference Format:
Erica Chiang, Nirav Atre, Hugo Sadok. 2022. Robust Heuristics: Attacks
and Defenses for Job Size Estimation in WSJF Systems. In ACM SIGCOMM
2022 Conference (SIGCOMM ’22 Demos and Posters), August 22–26, 2022,
Amsterdam, Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.
org/10.1145/3546037.3546062

1 Introduction
Packet scheduling algorithms control the order in which a sys-

tem serves network packets, which can have signi�cant impact on
system performance. Many systems rely on Shortest Job First (SJF),
an important packet scheduling algorithm with many desirable
properties. Classic results [3] show that SJF provably minimizes
average job completion time, and recent work [1] shows that a
variant of SJF also protects systems against algorithmic complexity
attacks (ACAs), a particularly dangerous class of Denial-of-Service
(DoS) attacks [4]. In an ACA, an adversary exploits the worst-case
behavior of an algorithm in order to induce a large amount of work
in the target system, causing a signi�cant drop in goodput despite
using only a small amount of attack bandwidth. SurgeProtector [1]
demonstrated that usingWeighted SJF (WSJF) – scheduling packets
by the ratio of job size to packet size – signi�cantly mitigates the
impact of ACAs on any networked system.

There is just one problem: how do we determine a packet’s job size
without running the job? A common technique is to estimate job
sizes using heuristics. In an adversarial setting, however, inaccura-
cies in job size estimation may be exploitable, re-opening the door
to ACA vulnerabilities. In this work, we explore three strategies
for using WSJF in practice and bound their vulnerability against
ACAs. Our key �ndings are: (1) any heuristic that results in esti-
mated job-size-to-packet-size ratios increasing monotonically with
the true ratios will lead to perfect scheduling, thereby maintaining
SurgeProtector’s guarantees; (2) a heuristic that accurately sepa-
rates jobs into job size categories can also protect a system against
ACAs, but the guarantees are not as strong; and (3) preempting jobs
that run for longer than their estimates does not guarantee bounds
on an adversary’s damage if the estimates are inaccurate.

2 Background and Motivation
Atre et al. [1] argue that in the absence of true job size informa-

tion, we can use heuristics to estimate job sizes. In this context, a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546062

heuristic 2̃ is a mapping from packets to estimated job sizes.1 But
in an adversarial setting, it is conceivable that incorrect estimates
could undermine the guarantees of a system’s protection against
attacks. Besides heuristics, we also explore preemption (i.e., pausing
a job and resuming it at a later point), another technique that may
help protecting systems when job sizes are unknown.

2.1 Mathematical Framework
We �rst build a mathematical framework for analyzing the im-

pact of adversarial tra�c on a system. Each packet can be charac-
terized by a packet size, B (?) (the amount of data sent over the wire,
in bits), and a job size, 2 (?) (the time required to process the packet,
in seconds). We de�ne a packet’s I-ratio as the ratio of its job size
to packet size, noting that WSJF schedules packets by increasing
I-ratio. Finally, we quantify the vulnerability of the system using
the Displacement Factor (DF) [1], de�ned as the adversary’s payo�
relative to the amount of resources they invest into the attack:

Displacement Factor (DF) =
Innocent tra�c displaced (Gbps)
Attack bandwidth used (Gbps)

 1

=)

2.2 WSJF and ACAs
In this section, we summarize the results of SurgeProtector [1]

in the context of our heuristic-based approach to packet scheduling.
SurgeProtector uses the DF to quantify the severity of an ACA, and
shows that WSJF scheduling imposes an upper-bound of 1 on the
DF. This implies that in order to displace 1 bps of innocent tra�c,
an adversary must invest at least 1 bps of their own bandwidth into
the attack. Given the practical limitations of crafting and sending
large volumes of data, a bounded DF greatly reduces the harm that
an adversary can do to a system. In this paper, we aim to understand
how these theoretical �ndings extend to practical settings where
job sizes are not known a priori.

2.3 Incorrect Estimates
The accuracy of heuristics is crucial to maintaining DF guaran-

tees. To illustrate why poorly designed heuristics can lead to an
unbounded DF, we consider a heuristic that incorrectly estimates
packets of a certain true job size, while all other packets are esti-
mated correctly. Figure 1 demonstrates why incorrect estimates can
be dangerous; in this example, all packets have unit size, such that
WSJF orders packets by job size (represented by the packet width).

More formally, consider a heuristic that estimates the job size for
adversarial packets as n , allowing adversarial packets to have an
arbitrarily small I-ratio as n goes to 0. This implies that an attacker
can push the system into overload using an in�nitesimally small

1Here, we assume direct correspondence between true and estimated job sizes for
simplicity. However, our analysis admits more sophisticated mappings (e.g., probability
distributions) as well.

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Erica Chiang, Nirav Atre, Hugo Sadok

amount of their own bandwidth, displacing all innocent tra�c in
the process and leading to an unbounded DF. Thus, incorrect job
size estimates in a scheduling policy that relies on the job sizes of
packets (e.g., WSJF) can lead to arbitrarily bad DFs.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 1: WSJF should de-prioritize the attack packet, but with in-
correct estimates, innocent packets are displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical �ndings regard-

ing protection against ACAs when job sizes are unknown. Proofs
for all theorems can be found in [2].

3.1 Strictly Monotonically Increasing Heuristics
Maintain Perfect Scheduling

We �rst develop the concept of a ‘perfect’ heuristic, meaning that
all packets are scheduled correctly when using estimated job sizes.
Since correctly ordering all packets is equivalent to preserving the
relative ordering between any pair of packets, a perfect heuristic
must estimate job sizes such that between any two packets, the
packet with smaller I-ratio will have a smaller estimated I-ratio. We
can visualize this as any function mapping true ratios to estimated
ratios that is strictly monotonically increasing, as seen in Figure 2.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 2: Strictly monotonically increasing ratios lead to perfect
scheduling.

Any such heuristic preserves the relative ordering of packets as
they are scheduled according to WSJF, which in turn maintains all
guarantees from [1] and yields an upper-bound of 1 on the DF. In
§A.1, we prove the following:

T������ 1 (DF �� M�������� H��������). Under WSJF,
a heuristic 2̃ is perfect if and only if 2̃ (? )

B (? ) is strictly monotonically

increasing relative to 2 (? )
B (? ) ; such heuristics result in the DF being

upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which

packets are correctly classi�ed into job size categories, but packets
within each category (‘step’) are indistinguishable. In particular, we
consider heuristics where the range of actual job sizes that each
step covers has an upper bound that is a constant multiplicative

factor, : , times the lower bound, and estimates of each step increase
by the same factor : , as depicted in Figure 3.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 3: Step function heuristic.

Despite categorizing job sizes on a coarse level, the discrete steps
still enforce a lower bound on how small each packet’s job size
estimate can be, protecting all jobs below a certain threshold. As
we show in §A.2, this yields an upper-bound of : on the DF.

T������ 2 (DF �� S��� F������� H��������). A heuristic
of the form 2̃ (?) = 0 ·: blog: 2 (? ) c , where 0 is some arbitrary constant,
results in the DF being upper-bounded by : .

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting

systems against ACAs. The setup is as follows: each incoming job
is assigned an estimated job size of �? ; if the job has not �nished
running within the allocated �? time, the system preempts it and
reinserts the job (with saved state) back into the scheduling queue,
with an increased estimated job size of 2�? . The preemption model
is depicted in Figure 4.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 4: Preeemption system model.

This allows us to systematically allocate resources to each packet
and ensures that packets �nish according to job size order, even
when job sizes are unknown. However, even if there is no preemp-
tion cost – an overly optimistic assumption – this setup can result
in an unbounded DF. As we show in §A.3, preemption alone cannot
guarantee any bound on the DF:

T������ 3 (DF �� P���������M����). Under WSJF with
preemption but without heuristics, there exist regimes of system pa-
rameters for which the DF is lower bounded by d

1�d , where d  1 is
the load on the system due to innocent tra�c.

4 Next Steps
Having identi�ed desirable properties for heuristics and a frame-

work for reasoning about their vulnerability, the main unanswered
question is: how do we design data structures and corresponding
heuristics such that we see these properties in practice? In addition,
while we do not see theoretical bounds on the DF as a result of
preemption alone, is it possible that some level of preemption could
still be bene�cial in practice?

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Erica Chiang, Nirav Atre, Hugo Sadok

amount of their own bandwidth, displacing all innocent tra�c in
the process and leading to an unbounded DF. Thus, incorrect job
size estimates in a scheduling policy that relies on the job sizes of
packets (e.g., WSJF) can lead to arbitrarily bad DFs.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 1: WSJF should de-prioritize the attack packet, but with in-
correct estimates, innocent packets are displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical �ndings regard-

ing protection against ACAs when job sizes are unknown. Proofs
for all theorems can be found in [2].

3.1 Strictly Monotonically Increasing Heuristics
Maintain Perfect Scheduling

We �rst develop the concept of a ‘perfect’ heuristic, meaning that
all packets are scheduled correctly when using estimated job sizes.
Since correctly ordering all packets is equivalent to preserving the
relative ordering between any pair of packets, a perfect heuristic
must estimate job sizes such that between any two packets, the
packet with smaller I-ratio will have a smaller estimated I-ratio. We
can visualize this as any function mapping true ratios to estimated
ratios that is strictly monotonically increasing, as seen in Figure 2.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 2: Strictly monotonically increasing ratios lead to perfect
scheduling.

Any such heuristic preserves the relative ordering of packets as
they are scheduled according to WSJF, which in turn maintains all
guarantees from [1] and yields an upper-bound of 1 on the DF. In
§A.1, we prove the following:

T������ 1 (DF �� M�������� H��������). Under WSJF,
a heuristic 2̃ is perfect if and only if 2̃ (? )

B (? ) is strictly monotonically

increasing relative to 2 (? )
B (? ) ; such heuristics result in the DF being

upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which

packets are correctly classi�ed into job size categories, but packets
within each category (‘step’) are indistinguishable. In particular, we
consider heuristics where the range of actual job sizes that each
step covers has an upper bound that is a constant multiplicative

factor, : , times the lower bound, and estimates of each step increase
by the same factor : , as depicted in Figure 3.

True z-ratio,

Estimated 
z-ratio,     .

Strictly Increasing Ratio Estimates

Expected service order

Heuristic 
service order

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Real job size,

Estimated job 
size,      .

Step Function Heuristic

Figure 3: Step function heuristic.

Despite categorizing job sizes on a coarse level, the discrete steps
still enforce a lower bound on how small each packet’s job size
estimate can be, protecting all jobs below a certain threshold. As
we show in §A.2, this yields an upper-bound of : on the DF.

T������ 2 (DF �� S��� F������� H��������). A heuristic
of the form 2̃ (?) = 0 ·: blog: 2 (? ) c , where 0 is some arbitrary constant,
results in the DF being upper-bounded by : .

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting

systems against ACAs. The setup is as follows: each incoming job
is assigned an estimated job size of �? ; if the job has not �nished
running within the allocated �? time, the system preempts it and
reinserts the job (with saved state) back into the scheduling queue,
with an increased estimated job size of 2�? . The preemption model
is depicted in Figure 4.

1 2 3 4

4 1 2 3

Expected Service Order, 
using true job sizes

Actual Service Order, 
using estimated job sizes 

Innocent Packet Attack Packet

time
System Capacity

Scheduler: 
WSJF using   .

Job arrives, estimate job size 

Complete       work
Does not finish

Finish

Preempt, reschedule with 

Figure 4: Preeemption system model.

This allows us to systematically allocate resources to each packet
and ensures that packets �nish according to job size order, even
when job sizes are unknown. However, even if there is no preemp-
tion cost – an overly optimistic assumption – this setup can result
in an unbounded DF. As we show in §A.3, preemption alone cannot
guarantee any bound on the DF:

T������ 3 (DF �� P���������M����). Under WSJF with
preemption but without heuristics, there exist regimes of system pa-
rameters for which the DF is lower bounded by d

1�d , where d  1 is
the load on the system due to innocent tra�c.

4 Next Steps
Having identi�ed desirable properties for heuristics and a frame-

work for reasoning about their vulnerability, the main unanswered
question is: how do we design data structures and corresponding
heuristics such that we see these properties in practice? In addition,
while we do not see theoretical bounds on the DF as a result of
preemption alone, is it possible that some level of preemption could
still be bene�cial in practice?

(# of innocent bits dropped per bit of attack data transmitted)

Algorithmic complexity attacks: class of DoS 

attack that targets a system’s worst-case 

behavior to induce significant harm with little 

resource investment 

[1] Atre et al. 2022. SurgeProtector. (SIGCOMM ‘22).


